api ¶
Stimulus Python API module.
This module provides Python functions that wrap CLI functionality for direct use in Python scripts. All functions work with in-memory objects (HuggingFace datasets, PyTorch models, configuration dictionaries) instead of requiring file I/O operations.
Usage Examples:¶
Basic Data Processing¶
import stimulus
from stimulus.api import (
create_encoders_from_config,
create_splitter_from_config,
)
# Load your data
dataset = datasets.load_dataset("csv", data_files="data.csv")
# Create encoders from config dict
encoder_config = {
"columns": [
{
"column_name": "category",
"column_type": "input",
"encoder": [{"name": "LabelEncoder", "params": {"dtype": "int64"}}],
}
]
}
encoders = create_encoders_from_config(encoder_config)
# Encode the dataset
encoded_dataset = stimulus.encode(dataset, encoders)
# Split the dataset
splitter_config = {
"split": {
"split_method": "RandomSplitter",
"params": {"test_ratio": 0.2, "random_state": 42},
"split_input_columns": ["category"],
}
}
splitter, split_columns = create_splitter_from_config(splitter_config)
split_dataset = stimulus.split(encoded_dataset, splitter, split_columns)
Model Training and Prediction¶
# Define your model class
class MyModel(torch.nn.Module):
def __init__(self, hidden_size=64):
super().__init__()
self.layer = torch.nn.Linear(10, hidden_size)
# ... rest of model definition
def batch(self, batch, optimizer=None, **loss_dict):
# ... implement forward pass and training logic
return loss, metrics
# Create model config
model_config = model_schema.Model(
model_params={
"hidden_size": model_schema.TunableParameter(
mode="int", params={"low": 32, "high": 128}
)
},
optimizer={
"method": model_schema.TunableParameter(
mode="categorical", params={"choices": ["Adam", "SGD"]}
)
},
# ... other config
)
# Tune hyperparameters
best_config, best_model, metrics = stimulus.tune(
dataset=split_dataset,
model_class=MyModel,
model_config=model_config,
n_trials=20,
)
# Make predictions
predictions = stimulus.predict(split_dataset, best_model)
Modules:
-
api
–Python API for Stimulus CLI functions.
Functions:
-
check_model
–Check model configuration and run initial tests.
-
compare_tensors
–Compare prediction tensors using various similarity metrics.
-
create_encoders_from_config
–Create encoders from a configuration dictionary.
-
create_splitter_from_config
–Create a splitter from a configuration dictionary.
-
create_transforms_from_config
–Create transforms from a configuration dictionary.
-
encode
–Encode a dataset using the provided encoders.
-
load_model_from_files
–Load a model from files (convenience function for predict API).
-
predict
–Run model prediction on the dataset.
-
split
–Split a dataset using the provided splitter.
-
transform
–Transform a dataset using the provided transformations.
-
tune
–Run hyperparameter tuning using Optuna.
check_model ¶
check_model(
dataset: DatasetDict,
model_class: type[Module],
model_config: Model,
n_trials: int = 3,
max_samples: int = 100,
force_device: Optional[str] = None,
) -> tuple[dict[str, Any], Module]
Check model configuration and run initial tests.
Validates that a model can be loaded and trained with the given configuration. Performs a small-scale hyperparameter tuning run to verify everything works.
Parameters:
-
dataset
(DatasetDict
) –HuggingFace dataset containing train/test splits.
-
model_class
(type[Module]
) –PyTorch model class to check.
-
model_config
(Model
) –Model configuration with tunable parameters.
-
n_trials
(int
, default:3
) –Number of trials for validation (default: 3).
-
max_samples
(int
, default:100
) –Maximum samples per trial (default: 100).
-
force_device
(Optional[str]
, default:None
) –Force specific device ("cpu", "cuda", "mps") (default: None for auto).
Returns:
Example
config, model = check_model(dataset, MyModel, model_config) print("Model validation successful!")
Source code in src/stimulus/api/api.py
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
compare_tensors ¶
compare_tensors(
tensor_dicts: list[dict[str, Tensor]],
mode: str = "cosine_similarity",
) -> dict[str, list[float]]
Compare prediction tensors using various similarity metrics.
Parameters:
-
tensor_dicts
(list[dict[str, Tensor]]
) –List of tensor dictionaries to compare.
-
mode
(str
, default:'cosine_similarity'
) –Comparison mode ("cosine_similarity" or "discrete_comparison", default: "cosine_similarity").
Returns:
Example
results = compare_tensors([pred1, pred2], mode="cosine_similarity") print(results["cosine_similarity"])
Source code in src/stimulus/api/api.py
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
|
create_encoders_from_config ¶
Create encoders from a configuration dictionary.
Parameters:
-
config_dict
(dict
) –Configuration dictionary matching SplitTransformDict schema.
Returns:
Source code in src/stimulus/api/api.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
create_splitter_from_config ¶
create_splitter_from_config(
config_dict: dict,
) -> tuple[AbstractSplitter, list[str]]
Create a splitter from a configuration dictionary.
Parameters:
-
config_dict
(dict
) –Configuration dictionary matching SplitConfigDict schema.
Returns:
-
tuple[AbstractSplitter, list[str]]
–Tuple of (splitter_instance, split_columns).
Source code in src/stimulus/api/api.py
422 423 424 425 426 427 428 429 430 431 432 433 |
|
create_transforms_from_config ¶
Create transforms from a configuration dictionary.
Parameters:
-
config_dict
(dict
) –Configuration dictionary matching SplitTransformDict schema.
Returns:
Source code in src/stimulus/api/api.py
436 437 438 439 440 441 442 443 444 445 446 |
|
encode ¶
encode(
dataset: DatasetDict,
encoders: dict[str, Any],
num_proc: Optional[int] = None,
*,
remove_unencoded_columns: bool = True
) -> DatasetDict
Encode a dataset using the provided encoders.
Parameters:
-
dataset
(DatasetDict
) –HuggingFace dataset to encode.
-
encoders
(dict[str, Any]
) –Dictionary mapping column names to encoder instances.
-
num_proc
(Optional[int]
, default:None
) –Number of processes to use for encoding (default: None for single process).
-
remove_unencoded_columns
(bool
, default:True
) –Whether to remove columns not in encoders config (default: True).
Returns:
-
DatasetDict
–The encoded HuggingFace dataset.
Example
from stimulus.data.encoding.encoders import LabelEncoder encoders = {"category": LabelEncoder(dtype="int64")} encoded_dataset = encode(dataset, encoders)
Source code in src/stimulus/api/api.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
load_model_from_files ¶
Load a model from files (convenience function for predict API).
Parameters:
-
model_path
(str
) –Path to the model Python file.
-
config_path
(str
) –Path to the model configuration JSON file.
-
weights_path
(str
) –Path to the model weights file (.safetensors).
Returns:
-
Module
–Loaded PyTorch model instance.
Source code in src/stimulus/api/api.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
|
predict ¶
predict(
dataset: DatasetDict,
model: StimulusModel,
batch_size: int = 256,
) -> dict[str, Tensor]
Run model prediction on the dataset.
Parameters:
-
dataset
(DatasetDict
) –HuggingFace dataset to predict on.
-
model
(StimulusModel
) –PyTorch model instance (already loaded with weights).
-
batch_size
(int
, default:256
) –Batch size for prediction (default: 256).
Returns:
Example
predictions = predict(test_dataset, trained_model) print(predictions["predictions"])
Source code in src/stimulus/api/api.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
split ¶
split(
dataset: DatasetDict,
splitter: AbstractSplitter,
split_columns: list[str],
*,
force: bool = False
) -> DatasetDict
Split a dataset using the provided splitter.
Parameters:
-
dataset
(DatasetDict
) –HuggingFace dataset to split.
-
splitter
(AbstractSplitter
) –Splitter instance (e.g., RandomSplitter, StratifiedSplitter).
-
split_columns
(list[str]
) –List of column names to use for splitting logic.
-
force
(bool
, default:False
) –Overwrite existing test split if it exists (default: False).
Returns:
-
DatasetDict
–Dataset with train/test splits.
Example
from stimulus.data.splitting.splitters import RandomSplitter splitter = RandomSplitter(test_ratio=0.2, random_state=42) split_dataset = split(dataset, splitter, ["target_column"])
Source code in src/stimulus/api/api.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
transform ¶
transform(
dataset: DatasetDict,
transforms_config: dict[str, list[AbstractTransform]],
) -> DatasetDict
Transform a dataset using the provided transformations.
Parameters:
-
dataset
(DatasetDict
) –HuggingFace dataset to transform.
-
transforms_config
(dict[str, list[AbstractTransform]]
) –Dictionary mapping column names to lists of transform instances.
Returns:
-
DatasetDict
–Transformed HuggingFace dataset.
Example
from stimulus.data.transforming.transforms import NoiseTransform transforms_config = {"feature": [NoiseTransform(noise_level=0.1)]} transformed_dataset = transform(dataset, transforms_config)
Source code in src/stimulus/api/api.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
tune ¶
tune(
dataset: DatasetDict,
model_class: type[Module],
model_config: Model,
n_trials: int = 100,
max_samples: int = 1000,
compute_objective_every_n_samples: int = 50,
target_metric: str = "val_loss",
direction: str = "minimize",
storage: Optional[BaseStorage] = None,
force_device: Optional[str] = None,
) -> tuple[dict[str, Any], Module, dict[str, Tensor]]
Run hyperparameter tuning using Optuna.
Parameters:
-
dataset
(DatasetDict
) –HuggingFace dataset containing train/test splits.
-
model_class
(type[Module]
) –PyTorch model class to tune.
-
model_config
(Model
) –Model configuration with tunable parameters.
-
n_trials
(int
, default:100
) –Number of trials to run (default: 100).
-
max_samples
(int
, default:1000
) –Maximum samples per trial (default: 1000).
-
compute_objective_every_n_samples
(int
, default:50
) –Frequency to compute objective (default: 50).
-
target_metric
(str
, default:'val_loss'
) –Metric to optimize (default: "val_loss").
-
direction
(str
, default:'minimize'
) –Optimization direction ("minimize" or "maximize", default: "minimize").
-
storage
(Optional[BaseStorage]
, default:None
) –Optuna storage backend (default: None for in-memory).
-
force_device
(Optional[str]
, default:None
) –Force specific device ("cpu", "cuda", "mps") (default: None for auto).
Returns:
-
tuple[dict[str, Any], Module, dict[str, Tensor]]
–Tuple of (best_config, best_model, best_metrics).
Example
config, model, metrics = tune( ... dataset=train_dataset, ... model_class=MyModel, ... model_config=model_config, ... n_trials=50, ... )
Source code in src/stimulus/api/api.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|