raytune_learner ¶
Ray Tune wrapper and trainable model classes for hyperparameter optimization.
Classes:
-
CheckpointDict
–Dictionary type for checkpoint data.
-
TuneModel
–Trainable model class for Ray Tune.
-
TuneWrapper
–Wrapper class for Ray Tune hyperparameter optimization.
TuneModel ¶
Bases: Trainable
Trainable model class for Ray Tune.
Methods:
-
export_model
–Export model to safetensors format.
-
load_checkpoint
–Load model and optimizer state from checkpoint.
-
objective
–Compute the objective metric(s) for the tuning process.
-
save_checkpoint
–Save model and optimizer state to checkpoint.
-
setup
–Get the model, loss function(s), optimizer, train and test data from the config.
-
step
–For each batch in the training data, calculate the loss and update the model parameters.
export_model ¶
export_model(export_dir: str | None = None) -> None
Export model to safetensors format.
Source code in src/stimulus/learner/raytune_learner.py
294 295 296 297 298 |
|
load_checkpoint ¶
Load model and optimizer state from checkpoint.
Source code in src/stimulus/learner/raytune_learner.py
300 301 302 303 304 305 306 |
|
objective ¶
Compute the objective metric(s) for the tuning process.
Source code in src/stimulus/learner/raytune_learner.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
save_checkpoint ¶
Save model and optimizer state to checkpoint.
Source code in src/stimulus/learner/raytune_learner.py
308 309 310 311 312 |
|
setup ¶
Get the model, loss function(s), optimizer, train and test data from the config.
Source code in src/stimulus/learner/raytune_learner.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
step ¶
step() -> dict
For each batch in the training data, calculate the loss and update the model parameters.
This calculation is performed based on the model's batch function. At the end, return the objective metric(s) for the tuning process.
Source code in src/stimulus/learner/raytune_learner.py
263 264 265 266 267 268 269 270 271 272 273 |
|
TuneWrapper ¶
TuneWrapper(
model_config: RayTuneModel,
data_config_path: str,
model_class: Module,
data_path: str,
encoder_loader: EncoderLoader,
seed: int,
ray_results_dir: Optional[str] = None,
tune_run_name: Optional[str] = None,
*,
debug: bool = False,
autoscaler: bool = False
)
Wrapper class for Ray Tune hyperparameter optimization.
Methods:
-
tune
–Run the tuning process.
-
tuner_initialization
–Prepare the tuner with the configs.
Source code in src/stimulus/learner/raytune_learner.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
tune ¶
tune() -> ResultGrid
Run the tuning process.
Source code in src/stimulus/learner/raytune_learner.py
187 188 189 |
|
tuner_initialization ¶
tuner_initialization(
data_config_path: str,
data_path: str,
encoder_loader: EncoderLoader,
*,
autoscaler: bool = False
) -> Tuner
Prepare the tuner with the configs.
Source code in src/stimulus/learner/raytune_learner.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|